Tabled de vérité 3. Table de Karnaugh 3. Théorèmes logiques Un système logique est dit combinatoire si l'état de sa sortie ne dépend que de l'état de son entrée. Le système combinatoire ne doit donc pas présenter de réactions de la sortie sur l'entrée, de sorte à ce que l'état de la sortie ne dépende pas de l'histoire du système. Fonction nand et nor exercices corrigés des épreuves. A tout instant, on peut représenter logiquement un système combinatoire en faisant une liste des entrées et des sorties: la table de vérité. Par exemple, la table de vérité du décodage gray-binaire sur 3 bits est donnée par: |Code gray |Code binaire | |(entrée) |(sortie) | |000 |000 | |001 |001 | |011 |010 | |010 |011 | |110 |111 | |100 |101 | |101 |110 | |111 |100 | 3. Table de Karnaugh Cette forme de représentation est utilisée pour trouver une expression simplifiée d'une fonction logique. Dans le cas d'un système à quatre variables d'entrée, on crée un tableau à 2 x 4 entrées, puis on regroupe les termes adjacents. Par exemple, soit la table de vérité suivante: |ABCD |E| |0000 |1| |0001 |1| |0010 |0| |0011 |0| |0100 |0| |0101 |1| |0110 |0| |0111 |1| |1000 | | | |0| |1001 |0| |1010 |0| |1011 |1| |1100 |0| |1101 |1| |1110 |0| |1111 |1| La résolution par Karnaugh donne: Notez que les lignes 2, 3 et les colonnes 2, 3 présentent une variable.

Fonction Nand Et Nor Exercices Corrigés Des Épreuves

Exemple: La lampe possède 2 états: allumée -1-, ou éteinte -0-. Cet état est fonction de la position -ouvert 0 ou fermé 1- des différents interrupteurs, a, b et c. Les interrupteurs sont les variables logiques. Il y a donc 1 variable dans (1), 2 variables dans (2), ou 3variables dans (3). le résultat de la fonction logique est l'état de la lampe, qui possède bien 2 valeurs: allumée -1- ou éteinte -0-. Une fonction logique peut être représentée par une table donnant pour toutes les combinaisons des états des variables, l'état correspondant de la fonction. Elle comporte { 2}^{ n} lignes -ou n est le nombre de variable, dans l'ordre binaire naturel. Cette table est appelée table de vérité. La fonction NAND (NON ET) en logiques combinatoire. Cette table peut être totalement définie, c'est-à-dire que l'état de la sortie est parfaitement connue en fonction des variables d'entrées, incomplètement définie, c'est-à-dire qu'il existe des états de sortie dits indéterminés, ils traduisent en générale une impossibilité physique. Ils sont notés X dans la table de vérité.

Application Cas (1) – figure ci-dessus: nombre de variable logique: 1 nombre combinaison pour la fonction de sortie: { 2}^{ 1} = 2 états possibles. table de vérité: a f 0 0 1 1 Cas (2) – figure ci-dessus: nombre de variable logique: 2 nombre combinaison pour la fonction de sortie: { 2}^{ 2} = 4 états possibles. table de vérité: a b f 0 0 0 0 1 0 1 0 0 1 1 1 Cas (3) – figure ci-dessus: nombre de variable logique: 3 nombre combinaison pour la fonction de sortie: { 2}^{ 3} = 8 états possibles. table de vérité: a b c f f' 0 0 0 0 0 0 0 1 0 0 0 1 0 0 X 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 X 1 1 1 1 1 Fonction incomplètement définie: f' Règles de l'algèbre de Boole A- Lois de fermeture: a. b = a ET b = variable booléenne définie par la table de vérité de la fonction ET. a+b = a OU b = variable booléenne définie par la table de vérité de la fonction OU. Fonction nand et nor exercices corrigés et. B- Lois de commutativité: a. b = b. a a+b = b+a C- Lois d'associativité: a. (b. c) = (a. b). c a+(b+c) = (a+b)+c D- Lois d'idempotence: a. a = a a+a = a E- Lois de complémentarité: a.